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Abstract
Using a generalized tight-binding model, we study the changes induced in the
electronic and mechanical properties of carbon nanotubes with encapsulated
C60s. Provided enough overlap exists between the electronic states of the
nanotube and those of the C60s, a tiny gap (∼0.01–0.02 eV) opens in the band
structure of a metallic tube. The gap is seen to be wider for smaller separations
between the C60s. For semiconductor tubes, on the other hand, the encapsulated
C60s produce donor levels in the gap causing it to narrow. As regards mechanical
properties, doped tubes are observed to be slightly ‘softer’ than undoped ones.
This is indicated by reductions of the Young modulus and torsional rigidity of
the doped tubes by 0.4–1.8% and 0.6–1.2%, respectively, as compared to those
of the pure tubes. Moreover, the Poisson ratio of the doped tubes is seen to be
lower by ∼5%. These novel features of the fullerene-doped nanotubes should
be of interest in future applications.

1. Introduction

The experimental observation of single-wall carbon nanotubes encapsulating fullerene cages
[1–4] gives rise to the natural question of to what extent the electronic and mechanical
properties of the fullerene-doped nanotubes would be altered as a result of doping. In exp-
eriments, the encapsulated cages, the majority of which were reportedly C60s, were positioned
in such a way that a preferred van der Waals separation (0.3 nm) was maintained between the
cages and the nanotubes. It was suggested [3] that the presence or absence of encapsulated
cages was strongly correlated with the tubes’ diameters, mostly observed to be 1.3–1.4 nm.
In a row of encapsulated C60s concentric with a tube axis, the centre-to-centre distance
between two C60s was observed to be 1.0 nm [1], whereas for paired C60s, this distance
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was 0.9 nm [3]. These distances agree with the C60 separations in face-centred-cubic and
dimer structures, respectively.

The relatively large separation between the encapsulated C60s and the nanotubes observed
in experiments makes the overlap and hybridization of electronic states less likely. Therefore
one does not expect the encapsulation of C60s to significantly alter the electronic structure of
the nanotubes which are 1.3–1.4 nm in diameter. From a theoretical point of view, however,
it is possible to investigate changes in electronic structure of doped nanotubes when there is
stronger overlap of electronic states, e.g., for tubes with smaller radii. The van der Waals
interaction between the C60s and the nanotube, on the other hand, is strong enough to induce
slight changes in mechanical properties of the nanotube.

Here, we study the electronic and mechanical properties of C60-doped single-wall carbon
nanotubes, focusing on the differences between doped and pure materials. Calculating total
energies, we first concentrate on the favoured positions of the C60s within the nanotube.
Next, the electronic structures of several doped nanotubes are derived and compared with the
undoped cases. Finally we consider mechanical characteristics, calculate the Young modulus
and torsional rigidity of the doped tubes, and investigate the changes in Poisson ratio as a result
of doping.

2. Model and method

The main system considered here in making the total-energy and relaxation calculations
includes a (10, 10) tube, whose diameter is 13.6 Å. This particular nanotube is special among
armchair tubes as it is of precisely the right size to accommodate a C60 inside it with the
appropriate van der Waals spacing [5]. Moreover, as the armchair tubes are energetically
more stable [6], the choice of an armchair tube among tubes having almost the same diameter
is appropriate. It should be mentioned, however, that the effect of chirality on the elastic
properties is small [6]. For the calculations of the electronic structure and density of states
(DOS), on the other hand, several different tubes are considered. These include tubes of
different chiralities/diameters which will be introduced later. A supercell in our calculation
will therefore contain part of a nanotube encapsulating a few C60s. The exact length of the
tube within the supercell as well as the number of encapsulated C60s are subject to change
according to the specific case under consideration.

In order to model the system, we use a tight-binding formalism with the Xu et al
parametrization for carbon [7], which has proven to be a transferable potential in tight-binding
studies of carbon systems. This parametrization, however, is insensitive to the van der Waals
interactions, which should be taken care of separately. The van der Waals interaction is
shown to be important in explaining the experimental results on fullerene systems in which the
interactions of separate carbon clusters play a crucial role. These include, e.g., phase transitions
in solid C60 [8] as well as Raman spectra [9] and vibrational modes [10] of nanotube bundles. In
these studies, the experimental results were reproduced, with satisfying accuracy, by summing
over all interfullerene carbon–carbon interactions using a Lennard-Jones potential. The same
Lennard-Jones model was also used to study the shape of large multiple-shell fullerenes [11].
Here, we use the same Lennard-Jones pair potential, i.e.,

U(r) = 4ε[(σ/r)12 − (σ/r)6]

with ε = 2.964 meV and σ = 3.407 Å, in order to include the interfullerene van der Waals
interactions. The cut-off radius used to determine which atoms are neighbours is set at 5.5 Å.
For each atom in a basal plane of graphite, for example, this corresponds to including the
interactions of up to six nearest neighbours in the adjacent layers.
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As the number of carbon atoms in the system under study is rather large (typically
680–1020), it is important to use efficient methods for total-energy/relaxation calculations.
Therefore the O(N) density-matrix electronic structure calculation method proposed by Li
et al [12] is used in the present study. This method is based upon a variational solution for the
density matrix, and has proven to be faster than the conventional methods of electronic structure
calculation for large systems. As for the structure relaxation, which is crucial, especially in
calculating mechanical properties such as the Young modulus and torsional rigidity, we use the
Broyden minimization scheme [13]. Using this method, it is practical to reach force accuracies2

of better than 1 meV Å−1 with moderate computational effort. This convergence criterion is
imposed on all the calculations involving structure relaxation here, unless otherwise specified.

For obtaining the electronic structure and DOS, we use direct diagonalization with 1000
k-points to calculate the band structure. This reveals the fine changes, e.g., tiny gaps, introduced
into the band structure as a result of doping. The DOS curves are then obtained by broadening
each eigenvalue with a Gaussian of 0.005 eV width.

As a reliability test for the present approach, we checked that the calculated interlayer
separation and Young modulus along the c-axis of a relaxed slab of graphite, made up of nine
sheets of carbon atoms, were indeed in excellent agreement with the experimental results. This
was anticipated, however, as the relevant van der Waals parameters were originally fitted [8]
to reproduce the experimental results. As a non-trivial test, we also calculated the elastic
constant c44 of the same graphite slab. It is observed that infinitesimal (up to 0.5 Å) changes
in the positions of atoms in a basal plane result in modifications of atomic positions in the four
nearest planes. A second-order polynomial fit to the resulting energy curves determines the
second derivative to be 0.224 eV/atom. Taking the effective thickness of a graphite sheet to
be 3.4 Å, the elastic constant c44 is estimated to be 0.004 TPa. This agrees excellently with
the experimental result (�0.004 TPa) reported by Seldin and Nezbeda [14].

In addition to the above tests for graphite, we also compared the Young moduli of single-
and double-wall tubes with diameter 13.6 Å, calculated using the present model, against the
ab initio results of Sánchez-Portal et al [6]. As will be shown shortly, the agreement is very
good. It should be mentioned that throughout this paper whenever the Young modulus is
converted from eV/atom (for the second derivative of energy with respect to the axial strain)
to TPa, the above-mentioned effective thickness is assumed for the nanotube wall(s).

3. Results and discussion

3.1. Preferred positions of C60 molecules

In order to obtain the favoured positions of the C60s inside the nanotube, we perform two
different sets of calculations. First, a portion of the (10, 10) tube containing 600 atoms,
and 36.37 Å in length, is considered in the supercell. A C60 is then located inside the tube,
and several total-energy calculations are performed for different distances between the C60

centre and the nanotube axis. At each distance, the energy calculation is performed after fully
relaxing the structure, as discussed earlier. In these relaxations the separation of the C60 and the
nanotube is fixed. This is achieved by fixing the atoms belonging to two of the C60 hexagons,
which are almost perpendicular to the radial direction passing through the centre of the C60.
These two hexagons are therefore the closest and furthest ones with respect to the nanotube
axis. Moreover, two rings, of 20 carbon atoms each, at each end of the nanotube are also fixed

2 Total-energy convergence turns out not to be sufficient in structure relaxations, as a high degree of energy
convergence does not necessarily mean a high degree of convergence for all the force components, but the reverse is
always true.
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throughout the relaxations discussed here, as well as all other relaxations to be discussed later.
This is done in order to prevent distortions at the open ends of the nanotubes, as we do not
impose periodic boundary conditions on the nanotubes in calculations involving relaxation.

The results of total-energy calculations for different distances between the C60 centre and
the nanotube axis, shown in figure 1(a), indicate that the favoured position of the C60 along the
radial direction of the nanotube occurs when the C60 centre coincides with the nanotube axis.
This is mainly due to the van der Waals repulsion, as the cut-off of the tight-binding model
that we use here is 2.6 Å. Therefore, from now on, we will assume that all the encapsulated
C60s are concentric with the nanotube axis.
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Figure 1. (a) Total energy for relaxed structures at different values of the distance between the C60
centre and the nanotube axis, d1. (b) Total energy for different values of the distance between the
centres of neighbouring C60s, d2.

A second set of calculations is next performed to derive the total energy of the system
as a function of the distance between the centres of different C60s. To this end, we put two
C60s inside the same nanotube portion as described above, and calculate the total energy of
the relaxed structures for different separations of those two C60s. Here, the inter-C60 distance
(the distance between the centre of neighbouring C60s) is kept fixed during the relaxation by
fixing four carbon atoms in each C60, which are the closest atoms with respect to the other
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one. Figure 1(b) depicts the results thus obtained. Despite the sharp increase in the repulsion
force for distances less than 9.5 Å, the energy curve is observed to be essentially flat for
distances greater than 10 Å. (It should be mentioned that here we concentrate on the range of
distances possible without the formation of a chemical bond between the C60s.) Although no
significant minimum is found at large separations, the presence of other C60s would sandwich
each C60 between its two neighbours at a favoured distance of ∼10–10.5 Å due to van der
Waals repulsion. The ending C60s of a chain would then be kept in place by, e.g., caps of the
nanotube or distortions in its wall. This latter case, however, might not result in a completely
stable configuration, and activated ‘jumps’ of the C60s would be possible. Examples of these
jumps have in fact been reported by Smith et al [3].

3.2. Electronic properties

As described before, for tubes with diameters in the experimentally observed range 1.3–1.4 nm,
one does not expect significant changes in electronic properties induced by encapsulated C60s,
due to the relatively large separation of the electronic states. In fact, the tight-binding model
considered here is insensitive to the overlap of the states whose corresponding atoms are
separated by more than 2.6 Å. Therefore, within the formalism adopted here, the DOS curves
corresponding to (10, 10) and (17, 0) tubes doped with C60s would be a mere superposition
of the pure-tube DOS and the C60-chain DOS, and there would be no overlap of electronic
states. The above-mentioned tubes, i.e., (10, 10) and (17, 0), are metallic and semiconductor
tubes, respectively, whose diameters lie within the experimentally observed range. In order to
enhance the overlaps and to make the electronic structure changes of the doped tubes detectable
within the present tight-binding formalism, we therefore choose two other tubes with smaller
radii. These are a metallic (8, 8) tube and a semiconductor (14, 0) tube, whose diameters
are 10.7 and 10.8 Å, respectively. Although these tubes are not experimentally observed to
encapsulate C60s, one can assume the changes induced in the electronic structure of these
tubes to be somewhat enhanced versions of the corresponding changes for larger tubes. In
other words, it is reasonable to expect the results obtained for the (8, 8) and (14, 0) tubes to
qualitatively hold for the (10, 10) and (17, 0) tubes with minor modifications.

We first consider the case of the doped (14, 0) tube. A portion of this tube, with a length
of 8.4 Å, is considered in the unit cell. It is assumed that this portion encapsulates one C60.
This would make the inter-C60 distance the same as the unit-cell length, i.e., 8.4 Å, which
is compatible with the inter-C60 distance in the C60 dimer [15]. The results of the DOS
calculation for both the doped tube and the pure one are shown in figure 2(a). It is clear that
the encapsulated C60s act as donor impurities for the semiconductor (14, 0) nanotube, as there
are (empty) donor levels produced within the gap as a result of doping. This causes a narrower
gap which can be more easily closed due to, e.g., lattice vibrations. The fact that C60s have the
same effect as donor impurities makes the fullerene-doped semiconductor nanotubes suitable
for transport applications, e.g., nano-diodes [16, 17], in which doping is required to modify
the electronic structure of part of the nanotube.

Next, the electronic structure of the doped (8, 8) tube is calculated. In this case we
distinguish between two different situations: (i) the inter-C60 distance equal to 9.7 Å; and
(ii) the inter-C60 distance equal to 8.49 Å. The calculated DOS of the pure tube together with
those of the cases (i) and (ii) are depicted in figure 2(b). The hybridization of the electronic
states of the tube with those of the C60s is seen to produce several levels within the pseudo-gap
of the metallic tube. Although the DOS curves, obtained by broadening each eigenvalue with a
Gaussian of 0.005 eV width, reveal the production of tiny gaps at the Fermi level, the structure
of the gaps can be better observed using the band structures. Therefore in figure 3 we show the
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Figure 2. (a) Densities of states (DOS) for the pure and doped (14, 0) tubes. For clarity, the DOS
curve of the doped (14, 0) tube is shifted vertically by 0.1. (b) DOS curves for the pure and doped
(8, 8) tubes. Cases (i) and (ii) refer to two inter-C60 distances. For clarity, the DOS curves of the
cases (i) and (ii) are shifted vertically by 0.1 and 0.2, respectively. The top of the valence band, for
all curves, is shifted to zero.

highest occupied and the lowest unoccupied levels. From this figure it is clear that a tiny gap
opens as a result of doping. The width of this gap is sensitive to the inter-C60 separation: the
gap corresponding to case (ii) is twice that corresponding to case (i). Although the gap width is
rather small, it nevertheless indicates a tendency towards metal-to-semiconductor transition in
an all-carbon system, which is an interesting feature of the fullerene-doped metallic nanotubes.
This feature is reminiscent of a similar gap-opening observed in metallic nanotube bundles [18].

3.3. Young modulus and torsional rigidity

One might be inclined to think that the fullerene-doped nanotubes are ‘stiffer’, i.e., show more
resistance to contraction/elongation as well as torsion, as compared to the pure tubes. This idea
arises from modelling the nanotube and the encapsulated C60 chain, each with an effective set
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Figure 3. The highest filled and lowest empty levels for the pure and doped (8, 8) tubes. Cases (i)
and (ii) refer to two inter-C60 distances. The tops of the valence bands are shifted to zero.

of springs, and considering these two sets to be connected in parallel. Here we show, however,
that this is not the case, at least for the non-dimerized C60 chains where the centre-to-centre
distance of the neighbouring C60s lies within ∼10–10.5 Å. In fact, the doped nanotubes are
observed to be slightly ‘softer’ under contraction/elongation/torsion. Using the spring analogy
described above, the van der Waals interaction between the C60s on one hand and the nanotube
on the other causes the effective springs corresponding to the nanotube to be connected in
series with the effective springs of the C60 chain.

In order to calculate the Young modulus and torsional rigidity of the doped tubes, we
consider a portion of the (10, 10) nanotube whose length is 41.22 Å, with the initial C–C
bond lengths of 1.4 Å. The portion contains four C60s, with the inter-C60 separation initially
set to 10.5 Å. Constrained relaxation is performed for different amounts of contraction/elong-
ation as well as torsion, in order to obtain the optimized geometries and the corresponding total
energies. Throughout the constrained relaxations, two carbon rings at each end of the nanotube,
together with the four outermost carbon atoms in each of the ending C60s, are kept fixed in
order to fix the axial strain/torsion angle. The total-energy results for both the doped and
pure materials are shown in figure 4. In addition, in this figure the results for the double-wall
nanotube (10, 10) + (5, 5) are given for comparison.

Upon fitting the data depicted in figures 4(a) and 4(b) with second-order polynomials, one
can obtain the Young modulus and torsional rigidity through the relations [19] F = 1

2Eu2
zz

and F = 1
2cτ 2, respectively. Here, F is the Helmholtz free energy (for which we use the

total energy of the relaxed structure), E is the Young modulus, uzz is the axial strain, and
c and τ are the torsional rigidity and torsion angle per unit length, respectively. We obtain
the Young moduli of the pure and double-wall tubes as 52.47 eV/atom and 51.86 eV/atom
(=0.94 TPa), respectively. These values agree excellently with the results of ab initio
calculations (52 eV/atom and 0.92 TPa, respectively) reported by Sánchez-Portal et al [6].
As for the torsional rigidity, the corresponding values for the pure and double-wall tubes are
obtained as 0.25 and 0.19 eV Å2 deg−2/atom, respectively.
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Figure 4. Total energy per atom for pure and doped (10, 10) nanotubes for different length changes
(a) and torsion angles (b).

The case of the C60-doped tubes is, however, somewhat tricky. This is because of the
fact that, unlike the case for the pure tube, the stress/torsion energy is not evenly distributed
among all the atoms in the C60 + nanotube system, due to the weak van der Waals coupling
between the C60s and the tube. Therefore, using the definitions of the Young modulus and
torsional rigidity based upon energy per atom—henceforth referred to as the conventional
definitions—would be misleading, as they include the total volume of the system. In fact,
using the conventional definitions, one would get much (up to ∼30%) lower values for the
Young modulus and torsional rigidity of the C60-doped tubes as compared to the pure ones,
simply because of the unrealistic assumption of evenly distributed stress/torsion energy. As
measures for the Young modulus and torsional rigidity better suited for the present case, we
propose3 the use of EL and cL, defined by FL = 1

2ELu2
zz and FL = 1

2cLτ 2, respectively.
Here, FL is the total energy per unit length of the system at equilibrium: FL = F/L0, with
L0 being the length at zero stress. For any given inter-C60 distance, the equilibrium length L0

3 Compare with a similar proposal of using total energy per unit surface in calculating the Young modulus; see [20].
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of the system has a well-defined value. Therefore, EL and cL, as defined above, provide us
with sensible measures for comparing the Young modulus and torsional rigidity of pure and
doped nanotubes.

Using the data of figure 4 multiplied by the corresponding number of atoms and divided by
the equilibrium length, the values of EL for the pure, C60-doped, and double-wall nanotubes
are obtained as 854.85, 851.59, and 1266.95 eV Å−1, respectively. Similarly, the values
of cL for the pure, C60-doped, and double-wall nanotubes are obtained as 4.08, 4.03, and
4.62 eV Å deg−2, respectively. Therefore, the Young modulus EL and torsional rigidity cL of
the C60-doped (10, 10) nanotube are observed to be lower than the corresponding values for
the pure (10, 10) tube by 0.4% and 1.2%, respectively. It is also worth mentioning here that
although the conventional torsional rigidity of the double-wall tube is 24% less than that of
the pure tube, the value of cL for the double-wall tube is 13.2% more than the corresponding
value for the pure tube. The reason for this is that the conventional calculation assumes evenly
distributed torsion energy, which is not correct for the double-wall tube due to the smaller
deviations of the atoms of the inner shell from their equilibrium positions compared to the
deviations of the atoms of the outer shell, for any fixed torsion angle.

For comparison, we also calculate EL and cL for the pure/C60-doped (9, 9) nanotube,
whose diameter, 12 Å, is less than that of the (10, 10) tube. The supercell configuration is
similar to the one described above for the (10, 10) tube, except that now a (9, 9) nanotube is
used4. We obtain EL as 773.42 and 759.59 eV Å−1, and cL as 3.12 and 3.10 eV Å deg−2, for
the pure and C60-doped (9, 9) nanotubes. Here, the reductions of EL and cL for the doped
(9, 9) tube are 1.8% and 0.6%, respectively, as compared to the corresponding values for the
pure tube.

Interestingly, the slight softness introduced in the nanotubes encapsulating C60s indicates
the higher significance of the van der Waals interaction between the C60 chain and the nanotube
compared to that of the same interaction between separate C60s within the encapsulated chain.

3.4. Poisson ratio

Using the same supercell configuration as described above for calculating the Young modulus
and torsional rigidity, one can also calculate the Poisson ratio. We calculate the Poisson ratio of
the C60-doped (10, 10) tube at two different positions along the tube: (1) using a ring of carbon
atoms between two neighbouring C60s; and (2) using a ring of carbon atoms surrounding one
of the C60s. These two rings are then used to obtain the average radial strain urr for different
values of the axial strain. The Poisson ratio σ is then obtained from urr = −σuzz.

In figure 5 we show the results obtained by deriving the optimized structures, through
constrained relaxations, for different contractions/elongations of the tube. Linear fits of the
results are then used to calculate the Poisson ratio for the pure tube, as well as those for the cases
(1) and (2) for the doped tube. The calculated Poisson ratios turn out to be 0.320, 0.311, and
0.303 for the pure case, doped case (1), and doped case (2), respectively. These results indicate
a reduction of the Poisson ratio by 2.8% and 5.3% at positions (1) and (2) of the doped tube,
as compared to the pure-tube case. One may compare the pure-tube Poisson ratio calculated
here with the result obtained using a force-constant model (0.280) reported by Lu [21] and that
from a tight-binding calculation (0.256) carried out by Hernández et al [20].

4 For calculating the elastic properties of the pure and doped (9, 9) nanotubes, the force convergence criterion is set
at 0.01 eV Å−1 instead of 1 meV Å−1. We explicitly checked that this did not have any effect on the final results
reported here.
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Figure 5. Average radius of a ring of carbon atoms in a (10, 10) nanotube as a function of its length
change, for the pure and doped cases. (1) and (2) refer to a ring located between two neighbouring
C60s and a ring surrounding one of the C60s respectively.

4. Conclusions

In conclusion, we observe that the preferred configuration for a C60 chain encapsulated by
a nanotube with diameter 13.6 Å occurs when the C60 centres lie on the nanotube axis and
a distance of ∼10–10.5 Å is maintained between the centres of the neighbouring C60s. It is
shown that when the electronic states of the nanotube have sufficient overlap with those of
the C60s, the electronic structure of the doped semiconductor tubes indicates the production
of donor levels within the gap, and metallic tubes show a tendency towards metal-to-semi-
conductor transition. The elastic features of the doped tubes are observed to be enhanced,
as indicated by a lower Young modulus and torsional rigidity compared to those of the pure
nanotubes. Furthermore, the presence of the C60s inside the tube causes the Poisson ratio to
decrease. These changes in the electronic and mechanical properties of the fullerene-doped
nanotubes can be used in practical applications. For example, a semiconductor nanotube which
is partly doped with fullerene cages might act as a nano-diode, and a C60-doped nanotube would
be suitable for use as a scanning tunnelling microscope tip, due to its enhanced elasticity.
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